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RE~TIONSHIPS FOR INTEGRAL OPE~TORS 
OF f%XED PROBLEMS OF flE&HANICS OF CONTINUOUS MEDIA* 

V.M. ALEKSANDROV, E.V. KOVALBNKO and S.M. MKRITARIAN 

The method of orthogonal polynomials, and its generalization, the method of ortho- 
gonal functions /1,2/ applied for the investigation of complex mixed problems ofthe 
mechanics of continuous media, are based on the utilization of spectral relation- 
ships that invert the main (singular) part of the kernel of the integral equation of 
the problem under consideration. A sufficiently general approach to the derivation 
of spectral relationships that is based on potential theory is proposed. Eigenfunc- 
tions are obtained in the problem of impressing a strip stamp in an elastic half- 
space, as are also the odd eigenfunctions of a logarithmic seriesin the case of two 
symmetric intervals. An an application of the results obtained, the solution is 
constructed for any value of a certain dimensionless parameter, for the plane con- 
tact problem of the impression of a rigid stamp into the surface of an elasticstrip 
which is under an interlayer of the type of a covering resting on an undeformable 
foundation. 

1. We consider the three-dimensional contact problem of frictionless impression of a 
rigid stamp in the surface of an elastic (6,~) half-space occupying the domain-m (x, y< m, 
2 > 0. 

As is known 131, the integral equation of such a problem has the form 

(1.1) 

(5, y) E L-2, e = G (I - V)-' 

Here p(s, 9) are the normal stresses that are unknown under the stamp, 0 is the contact 
domain between the stamp and the surface of the half-space, f&g) is a function describing 
the shape of the stamp base, 6--+& is its rigid displacement under the action of a 
force P and moments M,,MT,. 

Equation (1.1) is valid under the evident statics conditions 

(1.2) 

expressing the equilibrium of the stamp on the half-space surface and being used to determine 
the relationship between P,M,,M, and 6,a,p. 

We introduce the simple layer potential of density p&y) distributed over the plane 
domain P 

RK~rl)dEmt 
v'(= --EP + (r, - n)* + s* (1.3) 

It has been shown /3/ that o(s,Y,Z) is a harmonic function every_where in space exept on 
a plane slit in the domain Q, and it vanishes at infinity as PR-1 (R = v X* + y* + 9). Moreover, 
the function 0(x, y,z) is continuous in all space , including the domainQ also, anditsnormal 
derivative undergoes discontinuity in going from one side of the slit to the other, namely 

We set the following boundary condition on the slit 

(1.4) 

(0 (5, Y, 0) = acf3 16 - ax + BY - f (x, $!)I, (XT y) E s2 (1.5) 
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Then the solution of the integral equation (1.1) is equivalent to the problem (1.3)-(1.5) 
of determining the harmonic function o(s, y,z). 

The general idea of the method of solving the Dirichlet problem f1.3), (1.5) in whichthe 
unknown value of the density P fx, y) (1.4) is determined and elucidated in /3f. We demonstrate 
it intwoimportant particular examples. 

It is known /4/ that the contact problem concerning the frictionless impression of a 
stamp of strip planform in an elastic half-space in the case when the seat beneath it is 
determined by the formula w (x, y) = g(h, z)coshy reduces to the integral equation 

(1.6) 

Here 2a is the width of the strip, K, (t) is the Macdonald function, and h is an arbitr- 
ary positive number. 

We introduce the potential 

D 

o@,r,z)=& s s,(&E)&Ih t/ (~-D'+~'ld& (1.7) 

--D 

Then the solution of the integral equation (1.6) can be found, as mentioned above, by 
solving the following Dirichlet boundary value problem /4/: 

-$+s --h%=O (IS[-a,a],a+O) (1.8) 

w(h, x, 0) = g (a z) (I 5 I <a), 0 (A, xr z) -, 0, (2 +- a”) -, 00 

The formulas (1.4) are here rewritten in the form 

(1.91 

To construct the solution of the problem (1.81, we go over to the elliptic coordinates 

x= a cos q ch f. z = a sin 9 sh E 

Then 

.+-$&+(ch2&-cos2~)o,=O 

o&O, tj)=g(h, acosq), 0(X, '=,q) = 0 

(1.10) 

and we obtain in place of the first formula in (1.9) 
e a03 

(P(h,acouq)= I---- I almy\ 86 E=.Ll (1.11) 

which is valid for all values of 11. 
Assuming the function g&,x) to be such that it can be expanded into a uniformly conver- 

gent series of periodic Mathieu functions in the interval --o<sQa: 

(1.121 

we will seek the solution of the problem (1.10) in the form 

w (a, E, rl) = u (5) V(n) (1.13) 

We arrive at the necessity to study the Mathieu equations 

v" + (a + 2qcos2q) V = 0, u" - (a + 29ch25) U = 0 (1.14) 

V(0) V(q)= g(h, a GOS q), U(m) = 0 (a = const) 

Furthermore, following the general theory of the Mathieu equation /5/, we write the 
general solution (1.13) of the boundary value problem (1.10) formulated that satisfies the 
second condition of (1.141, in the form 

w&5,$= 5 -GFek,(L -Q)c%(% -g) (1.15) 
n=O 



Now utilizing the first boundary condition (1.14) as well as the representation 
we obtain an expression fox the arbitrary constants A, in (1.151, and taking account 
we find 

Since any harmonic in (1.16) satisfies (l.lO), then by substituting it into the integral 
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(1.121, 
of (1.11) 

(1.16) 

equation (1.61, in conformity with (1.12) we arrive at the following spectral relationship 
for the Wathieu functions: 

(1.17) 

We note that the latter has been obtained implicitly in /4/. 
We consider the odd plane contact problem of the impression of two symrmetrically arrang- 

ed stamps in an elastic half-plane. The integral equation of such a problem has the form /l/ 

We introduce the logarithmic potential 

Then the solution of the integral equation (1.18) is equivalent 
following external Dirichlet boundary value problem 

Ao = 0, (x, y) ZZ L, x1 + I/% # 0 

0 (2, f/) = f (sf, y = 0; w fx, Y) * 0, w + Y3 --* cc7 

cp (4 

this 

maps 

(1.18) 

(1.19) 

to the solution of the 

(1.20) 

After the function 0(&Y) in (1.19) has been constructed, the density of the potential 
will be determined from the formula (compare with (1.14)) 

(1.21) 

We construct the solution of the problem (1.201 by the method of conformal mapping. To 
end we note that the function /6/ 

z = 6 sn In-‘K’ (k) 1116, kl (k = b/u) (1.22) 

the complex plane z= x+ iy slit along L into the circular ring 

q0 < p < 40-l, q. = exp I--nK @)/K'(k)1 (1.231 

of the complex plane 5 = Pi*= E + in. Here Sn(u, k) is the Jacobielliptic function K(k),K'@j 
arecomplete elliptic integrals of the first kind of argument k and k' = v-C=B, respectiv- 
ely. 

In the conformal mapping (1.22) the upper half-plane Imr>O is mapped the upper half 
ring (h<p<qo-‘, O<$T<IK) the lower half-plane Imr<O into the lower half ring (qo<p<qo-*, 
-n<-+<O), and the infinitely remote point of the plane I goes over into the point 6= -1 
of the plane 6. In addition, the upper edge of the slit along the segment [b,.] goes over 
into the upper half ring of the outer circle p=-q#-l of the ring, and the lower edgeintothe 
lower half ring of this same circle. Analogously, the upper edge of the slit along the seg- 
ment I--ri---b,J goes over into the upper semicircle of the inner circumference p== p. of the 
ring, and the lower edge goes over into the lower semicircle of this circumference. 

Let us introduce the function 

zu = u + iv = n-'K' (k) In t; (1.24) 

mapping the rectangle {--R (k) \< u K (k), -K’ (k) Q u < K’ (k)) onto the above-mentioned circular 
ring. Separatingreal and imaginary parts in (1.241, we obtain 

= = =-'K' fkf in PI r = n-‘K (k)$ (qe < p < ~~-1, -_n< 'IP < n) (1.25) 



From (1.23) - (1.25) we will have 

z = b sn (u + iv, k), x = b sn (u, k) cn (iv, k) x 

Y = -fb cn (u, k) sn (iv, k) x, x = dn (iv, k) [l - 
k’ sn8 (u, k) snr (iv, k)]’ 

(1.26) 

where cn (u, k) and dn(u, k) are Jacobi elliptic functions. 
The segment [--a, -b] covered twice, or according to the above, the inner circumference 

P =40 of the ring corresponds tothe coordinate line u = -K(k), and the twice-covered seg- 
ment [b,a) or the outer circumference p=qO* of the ring corresponds to the coordinate line 
u = K (k). Since sn W(k),kl= 1, then we find on the coordinate line u = K(k) from the 
second formula in (1.26) by utilization of transformation formulas for Jacobi elliptic func- 
tions with imaginary argument /7/ 

s = b dn-' (u, k’) (I v (< K’ (k)) (1.27) 

On the other hand, by taking into account the representation of the function dn(u,k') by 
using an elliptic integral /7/, we find after simple operations 

(1.28) 

For -aQx< -b formula (1.28) should be continued oddly. 
It follows from (1.28) that when 5 grows from b to a, then v grows from 0 to K’(k), and 

therefore (1.28) yields the dependence between the variables v and x. 
Furthermore, starting from (1.25) and (1.27), we set 

The function fr($)is evidently defined on the inner circumference p = qO of the ring, 
and the function fB(+) on the outer circumference P = qo' of the same ring. Both are even 
functions of the variable w. 

Now, the boundary value problem (1.20) for the plane z with slit along L goes over into 
the following boundary value problem for the circular ring in the plane 6 after the conformal 
mapping (1.22): 

G+f$!jL ++Jg-=-0 (1.29) 

w (Pv q4 = fl (447 P = qo; w (Pv II) = f, w P = qo-'(--n( 

9 < 4 

W(l, +n) = 0 

where W(p,$) = o(x, y),and the relation between the variables P,$ and X,Y is by means of 
(1.25) and (1.26). At the same time, omitting the calculations, we represent the formula to 
calculatethepotential density (1.21) in the form 

cp (4 = 
K’ (k) v (03 _” z”) (z’ - b*) 

i3W c 3 p-&i- P-a;’ 
(b<x<a) (1.30) 

Utilizing the method of separation of variables to solve the problem (1.291, we obtain 

(1.31) 

qo~p<<o-~~ - 51 <*<m 

Taking account of (l-31), we conclude that the density (1.30) corresponding to the poten- 
tial W(p,$)will be expressed by the formula 

‘p (4 = 
K’ (k) v (a* ” 3) (%a - bz) 

{C nk,cth [W] x 
n=l 

(1.32) 



829 

where T,(t) are Chebyshev polynomials of the first kind. 
Now, in (1.32) let 

h, = O(rn# n), h, = 1 (m, n = 0, 1, 2,. ..) 

Then each of the expansions (1.31) will contain just one harmonic which satisfies the 
boundary value problem (1.29). Substituting it into the integral equation (1.18), we arrive 
at the following spectral relation: 

(1.33) 

The eigenfunctions of a logarithmic series yield the relation (1.33) in the case of two 
symmetric intervals. 

Now, setting in (1.33) 
a = 0, b = e-V, E = ev,x = O'(V> 0) 

we obtain 

1 

- s I In th Ye-t) T (3) dr 

2 L=pJ,(r) (n=0,1,2,...) 
A (7) -1 

(1.34) 

@=I,&...) 

s =coscc(z), r=cosa(t), A(z)= I/ch2y- ch 2yz 

a (7) = L 
K’ (e-v 

F(arcsinI/r, vm) 

Here F(s, y) is the elliptic integral of the first kind. 
The eigenfunctions of the kernel In (th~(t - r)2-' I(---1 \<T, t< 1) yield the spectral re- 

lationship (1.34). 

2. We use the obtained spectral relationship (1.34) to solve integral equations of mix- 
ed problems of the mechanics of a continuous medium (the paper /2/ is devoted to the applica- 
tion of the spectral relation (1.17) to solve the integral equations of such problems). 

It is known /9/ that a broad class of linear mixed problems of elasticity and viscoelas- 
ticity theory (contact problems), hydromechanics (linear problems of gliding, flow aroundthin 
profiles and surfaces, pr oblems of linear supercavitation , etc.) in planar and three-dimen- 
sional formulations reduce to a convolution integral equation of the first kind in a finite 
interval 

(2.1) 

m+iC 

N (t) = + s L (u) u-1 e-iut da ( t = A$+ , U=a+ir,lc)<y) 
--o+iC 

where the function L (u)is regular in the strip l r l \<Y, la I< CQ and the following asymptotic 
formulas hold 

L (a) = Au + 0 (I u 13) (I ul- O), L (u) = sgn u + 0 (@lot) 

(Iv 1-m) 
(2.2) 

The A,h,y and Y in (2.1) and (2.2) are constants whose values are determinedbyspecific 
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problems Constraints imposed on the right side of equation (2.1) will be indicated below. 
Because of condition (2.2), the function Z,(U) can be represented in the form /9/ 

from which 
L (u) = th Au + G (u) 

(2.3) 

Here H(t)as a function of the complex variable w = t +- is, is regular in the strip 1s (< 
inf(v, 2A), 1 t 1-C 00 and, moreover /9/ 

H(t)=O(cXI'I) (ltl-+~S, x=inf(y,&)) 

Therefore, the first component in the expression (2.3) forN(t)reflects completely all 
the fundamental properties of the kernel of the integral equation (2.1) for all tE IO, m). 

The second component in (2.3) is an arbitrarily smooth function for tE 1% m) and plays the 
part of a small addition. Therefore, to construct a method of solving the integral equation 
(2.1) which is identically effective for all values of hE (0, 33) it is necessary to invert 
exactly the integral operator 

The scheme of such a method is elucidated in /9/. In conformity with it, we assume that 
the even function f(z) E W~+II (-iv 1) (definitions of all the functional spaces mentioned are 
given in /9/) and we represent 'p(z) in (2.1) in the form 

cp (3 e (4 
=m’ A(x)=J’ch2y-ch2yx, (2.4) 

We then seek the function 8(z)in the relation (2.4) in the form of the following Fourier 
series in Chebyshev polynomials 

8(z)= jOajT*j (r) (2.5) 

We expand the function f(X) as well as the regular addition of the kernel H(t) in a unit- 
ary and binary series, respectively, in the mentioned system of polynomials. We will have 

f(z) -~~f,Tm(r)V H(t)=2 ,..~,.Ts, (8) T%(r) (2.6) 

Because of the above-mentioned properties of the functions f(x)and H(t)the series (2.6) 
converge uniformly to them for all [xl< 1, 1 E I\< 1, h>O. 

Using the orthogonality condition of the Chebyshev polynomials 

l 
1 (m=n=O) 

s T,(r) T,,, (4 d= 
h (4 

I 5 K' (e-*v) lh (m=n+O) 
-1 0 @#nn) 

we obtain 

(2.7) 

(2.8) 

Now, substituting (2.3)- (2.6) in the integral equation (2.1), using the relations (1.34) 
and (2.71, equating coefficients of the left and right sides in Chebyshev polynomials of ident- 
ical number in the expression obtained, we arrive at the following infinite system to deter- 
mine the unknown coefficients a,: 



Having obtained est9a2sxtes 
it can be asserted that the infinite system (2.9) is quasi-completely regular for a> 0. 
Moreover, a certain A,,>0 can be mentioned such that the infinite system (2.9) wilJ be com- 
pletely reguLar /lo/ for h> A0 

Having solved tbe system (2.91, we then find the function cp(X), the solution of the in- 
tegral equation (2.1) fox any value of tie parameter ~=(O,C+ by means of (2+4) arid t2.51. 

3. As an illustration, we consider the fdluwing conta,ct pxoble. Let a r%gid stamp 
of width 20' with a flat base interact with the surface of an elastic strip of thfiickness Sunder 
which lies an interlayer of the covering type (--hdYdO, A&H) lying without friction on an 
undeformable base (Fiq.1) e The condition of rigid adhesion is realized between the strip and 
the covering. The stamp is impressed in the strip by a force P. Tim friction forces on the 
contact line are assumed absent. The strip is not loaded outside the stamp, and we neglect 
mass forces. The case of the plane state of strain is examined. 

Under the assumptions made the boundary conditions of the problem will have the form 

The las;t boundary condition in (3.1) is brought together 
with the middldle plane of the covering on ths laxer boundary af 
the strip y-0 because of the slightness of the thickness of 
the interlayer (k-=z@a) f 

Applying the Fourier integral trans~omn in the vari&3.e 5 
/11,x' to solve the problem formulated, and going over to the di- 
mensionZess variables and notation 

Ffg*f iwe later omit the primes), we abtain the iotegral equation (2,13 
for the unknown contact presknlres n(*)under the stamp, where 

SC(U) = [ (27+sh 2u- 4r()u -+4m(nush 2~ + cb 2u - 1)) x 
((2~~ ch zu + x,* + 1 + 4~') u + 4m (nxlu+ nuch 2~ + 2~ f ah %A)]-1 

(3.2) 

Let us note that the statics condition 

Q W P(aO)-* = j cp (x)dz 
-1 

expressing the equilibrium of the stamp on the upper face af the strip! must be appenaed to 
f2.U. 

The approximate sofution of the integral equation 12.3.) z 0.2) can be obtakiedby the 
method elucidated in Sect,2: 

We set m=iO, n=0.1,vl=0.3 in (3.2). The distribution of the unknown contact pressuxes 
;rP(x)8-' under the stamp as well as the values of the guantities 46-l are given in tba table 
for certain X. It is important that the number of equations in tie shortened system (2.91 
does not exceed f&v= for different values of t&e paramtlter LE(O,mf. The accuracy guaranteed 
for the solutS.on of the problem Ls not less than 2%. 
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