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ON A METHOD OF OBTAINING SPECTRAL RELATIONSHIPS FOR INTEGRAL OPERATORS
OF MIXED PROBLEMS OF MECHANICS OF CONTINUOUS MEDIA®

V.M. ALEKSANDROV, E,V. KOVALENKO and S.M. MKHITARIAN

The method of orthogonal polynomials, and its generalization, the method of ortho-
gonal functions /1,2/ applied for the investigation of complex mixed problems of the
mechanics of continuous media, are based on the utilization of spectral relation-
ships that invert the main (singular) part of the kernel of the integral equation of
the problem under consideration. A sufficiently general approach to the derivation
of spectral relationships that is based on potential theory is proposed, Eigenfunc-
tions are obtained in the problem of impressing a strip stamp in an elastic half-
space, as are also the odd eigenfunctions of a logarithmic series.in the case of two
symmetric intervals. BAn an application of the results cobtained, the solution is
constructed for any value of a certain dimensionless parameter, for the plane con-
tact problem of the impression of a rigid stamp into the surface of an elasticstrip
which is under an interlayer of the type of a covering resting on an undeformable
foundation.

1. We consider the three-dimensional contact problem of frictionless impression of a
rigid stamp in the surface of an elastic (G, v) half-space occupying the domain — oo << z, y << o0,
z>0.

As is known /3/, the integral equation of such a problem has the form

2 (g ndidy — 206 — — (1.1)
SQS Vet = 2@ —ar + By — @)

(zypeER 6=661—v"

Here p (z, §) are the normal stresses that are unknown under the stamp, Q is the contact
domain between the stamp and the surface of the half-space, f{z,¥ is a function describing
the shape of the stamp base, § —axr 4+ By is its rigid displacement under the action of a
force P and moments M,, M,

Equation (1.1) is valid under the evident statics conditions

P=S§p(r,y)dxdy (1.2)

Me={Sup @ ndzdy,  My={{apepasay

expressing the equilibrium of the stamp on the half-space surface and being used to determine
the relationship between P, M, M, and 6, a, B.
We introduce the simple layer potential of density p (2, y) distributed over the plane

domain Q
_¢ p (& ) dEdn
(!)(itsy!z) SQS (:_£)3+(y~n)3+z; {1.3)

It has been shown /3/ that ® (%, ¥ 2) is a harmonic function everywhere in space exept on
a plane slit in the domain Q, and it vanishes at infinity as PR™ (R = V 2% 4 y* + z!). Moreover,
the function (2, ¥ 2) is continuous in all space, including the domain Q also, and its normal
derivative undergoes discontinuity in going from one side of the slit to the other, namely

(a_m) m{-{":gﬁp(x,y), (=yeE (L0
[ IS - 0, (x’ y)—é Q .
We set the following boundary condition on the slit

0@y 0 =208 —ax+Py—Fflxyl, @y (1.5)
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Then the solution of the integral equation (1.l) is equivalent to the problem (1,3)—{(1.5)
of determining the harmonic function ® (z, ¥, z)r

The general idea of the method of solving the Dirichlet problem (1.3}, (1.5) in which the
unknown value of the density » (z, y) (1.4) is determined and elucidated in /3/. We demonstrate
it in two important particular examples.

It is known /4/ that the contact problem concerning the frictionless impression of a
stamp of strip planform in an elastic half-space in the case when the seat beneath it is
determined by the formula w (z, y) = g (A, z) cos Ay reduces to the integral equation

¢ (1.6)
{ e DEME—z)dt=ng(h2) (z]<a)

-

pi{x, ¥y =9 (A, z)cos hy

Here 2a is the width of the strip, K, (f) is the Macdonald function, and A is an arbitx-
ary positive number.
We introduce the potential
[:3
1
oz )= | 00D KN VB T 714 (1.7

—a

Then the solution of the integral equation (L.6) can be found, as mentioned above, by
solving the following Dirichlet boundary value problem /4/:

P T _Me=0 (E[—aal270) (1.8)

ez, 0)=gh, (zi<a, 0ol 22 >0, @+ 22—
The formulas (1.4) are here rewritten in the form

3w (A 2, -0 — 1
L;;t.)__=+ﬁcp(x,z) (|z]<a) (1.9)

dw (A, z, O
2820 —0 (2>

To construct the solution of the problem (1.8), we go over to the elliptic coordinates
r=acosnchi z=asinyshg

Then
% 9w a®A?

a—a-+—5ﬁ-r—-—2—(ch2§—-0052n)m=0 (1.10)
@ (A, 0, ) =g (A acosn), o, co,n}=20

and we obtain in place of the first formula in (1.9)

A _ 0 ]
9( ’acosn)—alsin'ql T |z {1.11)

which is valid for all values of 7.
Assuming the function g (%, ) to be such that it can be expanded intc a uniformly conver-
gent series of periodic Mathieu functions in the interval —e zxCa:

o

g acosn)= Y hycenm,— ) (=277 (2.12)
=]
we will seek the solution of the problem (1.10) in the form
oG EN=UEVMm {(1.13)
We arrive at the necessity to study the Mathieu eguations
V" +{e +2gcos2n) V=10, U — (o +2¢qch28) U =0 {1.14)

U@ V=g acosn), U(o) =0 (o= const)

Furthermore, following the general theory of the Mathieu equation /5/, we write the
general solution (1.13) of the boundary value problem (1.10) formulated that satisfies the
second condition of (1.14), in the form

oA, W)mgo-dn Fekﬂ{§9 —g)cen (N, —q) (3.15)
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Now utilizing the first boundary condition (1.14) as well as the representation (1.12),
we obtain an expression for the arbitrary constants 4, in (1.15), and taking account of {(1.11)
we find

N 8 = Fek, (0, — g}
(A acosn)= RTEY Zhn Fox, 0, =0 cen (% —q) {1.16)
n=0

Since any harmonic in (1.16) satisfies (1.10), then by substituting it into the integral
equation (1.6), in conformity with (1.12) we arrive at the following spectral relationship
for the Mathieu functions:

2 -1, nFek, (0, — g}
S ceﬂ(&;’?:;% 9 Xn(},]g_.x‘)dg:ﬁ:;—ceﬂ(arccasm",--q) (1.17)

We note that the latter has been obtained implicitly in /4/.
We consider the odd plane contact problem of the impression of two symmetrically arrang-
ed stamps in an elastic half-plane. The integral eguation of such a problem has the form /1/
a

Lo@m |5 |&=1@ 0<z<a (1.18)
b
M=ZS(P($)zda:

b

We introduce the logarithmic potential

1 .
m(z,y):iln—r(z__—_—.{__mw(’é)d& L={z.b<}z{<a} (1.19)

Then the solution of the integral equation (1.18) is equivalent to the solution of the
following external Dirichlet boundary value problem

Aw =0, (£, E L, 2*+ y* %0 (1.20)
oy =Ff@y=0 oy —0*+y)—>ow

After the function ® {2, ) in (1.19) has been constructed, the density of the potential
p (z) will be determined from the formula (compare with (1.14))

1 e
cp(z)=_7vlm—“l% ¢<lz|<a) (1.21)

We construct the solution of the problem (1.20) by the method of conformal mapping. To
this end we note that the function /6/

z=bsn [n'K’ (k) Ing, kI (k = b/a) (1.22)
maps the complex plane z==z- iy slit along L into the circular ring
P <P < o go = exp [—nK (k)/K’' (k)] (1.23)

of the complex plane t =pe¥ =§ 1 in. Here sa(u, k) is the Jacobi elliptic function K (k), K'(£)
are complete elliptic integrals of the first kind of argument % and % =¥ 1 — k%, respectiv-
ely.

In the conformal mapping (1.22) the upper half-plane Imz>0 is mapped the upper half
ring {ga<p<gl 0 <P < n} the lower half-plane Imz< 0 into the lower half ring {g, <<p < g%
—n <9< 0}, and the infinitely remote point of the plane sz goes over into the point {= —1
of the plane § In addition, the upper edge of the slit along the segment [b, a) goes over
into the upper half ring of the outer gircle p=1¢" of the ring, and the lower edge intoc the
lower half ring of this same circle. Analogously, the upper edge of the slit along the seg-
ment |—a —b,] goes over into the upper semicircle of the inner circumference p=g¢ of the
ring, and the lower edge goes over into the lower semicircle of this circumference.

Let us introduce the function

w=uy-iv=n"K ()Inf (1.24)

mapping the rectangle {—K (k) < u K (%), —K' (k) <v< K’ (k)} onto the above-mentioned circular
ring. Separatingreal and imaginary parts in (1.24), we obtain

w=n"K"(Klnp, v=a"K BV << a? — <Y< W) (1.25)
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From (1.23) — (1.25) we will have

z=="bsn(u+tiv, k), z=bsn (u, k) cn (iv, k) » (1.26)
y = —iben (u, k) sn (iv, k) %, ®» = dn (iv, k) [1 —
k* sn? (u, k)sn? (iv, k)1

where en (u, k) and dn (u, k) are Jacobi elliptic functions.

The segment [—a,—b] covered twice, or according to the above, the inner circumference
p =g of the ring corresponds to the coordinate line = —K (k), and the twice-covered seg-
ment [b, a] or the outer circumference p=gy? of the ring corresponds to the coordinate line
u=UK(k) . sSince snlK(k),kl =1, then we find on the coordinate line u = K (k) from the
second formula in (1.26) by utilization of transformation formulas for Jacobi elliptic func-
tions with imaginary argument /7/

z=bdn (v, k') (|v | < K’ (k) (1.27)
On the other hand, by taking into account the representation of the function dn (v, k') by
using an elliptic integral /7/, we find after simple operations

x/b at

V== m b<zKa) (1.28)
1

For —a < z< —b formula (1.28) should be continued oddly.

It follows from (1.28) that when r grows from b to &, then v grows from 0 to K'(k), and
therefore (1.28) yields the dependence between the variables v and z.

Furthermore, starting from (1.25) and (1.27), we set

f1(¢)=—f{—h[n_11(l:w]—}y fai)=—hH{) (—n<P<H)

The function f, (})is evidently defined on the inner circumference p = g, of the ring,
and the function f, () on the outer circumference p = gy of the same ring. Both are even
functions of the variable V.

Now, the boundary value problem (1.20) for the plane z with slit along L goes over into
the following boundary value problem for the circular ring in the plane { after the conformal
mapping (1.22):

"W 1 oW 1 W
o T e T

W 9 =5H0), p=g; Wi 9 =L p=q(—a<
V<< w)

W, 4n) =0

=0 (1.29)

where W (p, V) = o (2, ¥), and the relation between the variables p,¢y and %, ¥ is by means of
(1.25) and (1.26). At the same time, omitting the calculations, we represent the formula to
calculate the potential density (1.21) in the form

P (r) = L [p%] L <2<a) (1.30)

K' (k) V (a* — =) (2 — b%) p=ag

Utilizing the method of separation of variables to solve the problem (1.29), we obtain

/8/

1 XY by (0" —p™ cos mp K (k)
""")—‘2‘2 Sh[RK K@ T = rer ity (1.31)

fi)=(— 1)j [ho + Tzlh,,cos mp] (i=1,2)

Q<P —apgKa
Taking account of (1.31), we conclude that the density (1.30) corresponding to the poten-
tial W (p, ¢¥) will be expressed by the formula

_ ¢ 3 _nnK () (1.32)
P @)= K’ (k) V (a® — 2% (=8 — 59 {,.Z{ rh cth[ K" (k) ] %

hy K’
LX) 2 Fg] 6<z<a
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x/b

n dt
X=COS'llJ, '\p= E0)) § V(f:_”(i-—k‘ltz)

where T, (f) are Chebyshev polynomials of the first kind.
Now, in (1.32) let
by =0(msen),h, =1(m,n=20,1,2,...)

Then each of the expansions (1.31) will contain just one harmonic which satisfies the
boundary value problem (1.29). Substituting it into the integral equation (1.18), we arrive
at the following spectral relation:

¢ |Ete T, _ (1.33)
§1n e e e N =0T (X) (n=0,1,...)

n E/b at
Y =cosa,a= yan S Veh i <t<a

_ kwm nnkK (k) _ =
Ay— th[ LS ] ho= LK (k)

The eigenfunctions of a logarithmic series yield the relation (1.33) in the case of two
cymmetric intervals.
Now, setting in (1.33)
a=eb=e"E=e"z=e'(y>0)

we obtain

1

—_ T (s)dt
—Slnlthl(r—zt—)l———z:—r)—=pﬂT,,(r) (n=0,1,2,...)
-1

(1.34)

K (™),

V2 ne™?
Mo == v

2V ., K (7%
lln=v:—;K(e'W)th[“"*K—,W] (n=1,2,..)

s=cosa(t), r==cosa(t), A(t)=V ch2y—chyt
n . e _ VT
a(r)=mF(arcsml/ —Tmm V 1—9‘47)

Here F (r, y) is the elliptic integral of the first kind.
The eigenfunctions of the kernel In [thy (t —1)271 | (—1 < 1, t< 1) yield the spectral re-
lationship (1.34).

2. We use the obtained spectral relationship (1.34) to solve integral equations of mix-
ed problems of the mechanics of a continuous medium (the paper /2/ is devoted to the applica-
tion of the spectral relation (1.17) to solve the integral equations of such problems).

It is known /9/ that a broad class of linear mixed problems of elasticity and viscoelas-
ticity theory (contact problems), hydromechanics (linear problems of gliding, flow around thin
profiles and surfaces, problems of linear supercavitation, etc.) in planar and three-dimen-
sional formulations reduce to a convolution integral equation of the first kind in a finite

interval
1

{e@n (2t )=n@ (z1<D) (2.1)
-1

oo}-ic
N(t)=—;— S L(u)u"e““‘du(t= E;:z y u=o+itnjc|<¥y)

—ccf-ic

where the function L (1) is regular in the strip |7 | <y, |0 |< oo and the following asymptotic
formulas hold
Lw=Au+0(ul) (Jul—0), L(u)=sgnac -+ O (evo

(| 6 | — o) (2.2)

The 4,X,9 and v in (2.1) and (2.2) are constants whose values are determined by specific
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problems Constraints imposed on the right side of equation (2.1) will be indicated below.
Because of condition (2.2), the function L () can be represented in the form /9/

L (uw) = th Au + G ()
from which
1 G
N(t)=-—-ln|th |+H(t), H(t)= S £06) giot o 2.3)

Here H (f)as a function of the complex variable y =t 4 isy is regular in the strip |s|<<
inf (v, 24), |t | << oo and, moreover /9/

H (t) =0 (M) (ltl—>°°» x=iuf (1. 37))

Therefore, the first component in the expression (2.3) for N (f) reflects completely all
the fundamental properties of the kernel of the integral equation (2.1) for all ¢ & [0, oo).
The second component in (2.3) is an arbitrarily smooth function for f €& [0, =) and plays the
part of a small addition. Therefore, to construct a method of solving the integral equation
(2.1) which is identically effective for all values of A& (0, ) it is necessary to invert
exactly the integral operator

1
Lrg= — S q)(E)lnIthi-‘%fﬁ) dt
~1

The scheme of such a method is elucidated in /9/. In conformity with it, we assume that
the even function f(z) & Waw (—1, 1) (Qefinitions of all the functional spaces mentioned are
given in /9/) and we represent @ (z) in (2.1) in the fomm

9(1)

®(2) =4y A=V ch2y—chyz, (2.4)

7=2_:;:’ 0@@) L (—1,1)

We then seek the function 0 (z)in the relation (2.4) in the form of the following Fourier
series in Chebyshev polynomials

9($)=j§°a5Tsj (") (2.5)

We expand the function f{%) as well as the regular addition of the kernel # {{} in a unit-
ary and binary series, respectively, in the mentioned system of polynomials, We will have

f@) = i T h BO)= 3 ,i emnTam ) Tan (1) (2.6)

Because of the above-mentioned properties of the functions f(z) and H (t)the series (2.6)
converge uniformly to them for all |z| <1, [E[<<1,A>0.
Using the orthogonality condition of the Chebyshev polynomials

1 1 (m=n=0)
| o0 — Yo ke th m=nre0) 27
5 ® 0 (ms=n)
we obtain
T d
fu="Bn Sf() ’[{8’ (2.8)

1 Ty, () Ty, (r) d5dz
mn () =Pnbn § SH o= F e —

<1-1

Bo=7ve? [VZ K" (e, Bo=2Bo (n>1)

Now, substituting (2.3)- (2.6) in the integral equation (2.,1), using the relations (1.34)
and (2.7), equating coefficients of the left and right sides in Chebyshev polynomials of ident-
ical number in the expression obtained, we arrive at the following infinite system to deter-
mine the unknown coefficients aqj
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% S

by = p Yy Cnp (B = BBl )

s R asd fos b En P I andea & Fha oooEo i Gy
AVINnYG obtained estimates of the v-yyt: in ;7{ for the coefficients of the system 4.9,

it can be asserted that the infinite system (2.9) is quasi-completely regular for A> 0.
Moreover, & certain Ay » 0 can be mentioned such that the infinite system (2.9) will be com-

. NS Ban A
pletely regular /10/ fog .n,/n.(,

Having solved the system (2.9), we then find the function ¢ {7), the solution of the in-
tegral equation {(2.1) for any value of the parameter ) ¢= {0, =), by means of {2.4) and (2.5}.

a,-l- yy a_..;(Ma.,——b (j=091y27---)
=0

L

3. As an illustration, we consider the following contact problem. ILet s rigid stamp
of width 22" with a flat base interact with the surface of an elastic strip of thickness H under
which lies an interlayver of the covering type (-2 <y O <L H) lying without friction on an
undeformable base (Fig.l). The condition of rigid adhesion is realized between the strip and
the covering. The stamp is impressed in the strip by a force P. The friction foreces on the
contact line are assumed absent. The strip is not loaded outside the stamp, and we neglect
mass forces., The case of the plane state of strain is examined.

Under the assumptions made the boundary conditions of the problem will have the form

¥y=Hityt=0, gfp=0{{zi>ah wn==8{zsi<g {3.1}
¥y 0wy = up, 0y = 0, 0 = 0%, Tt = Ty
AGhuy" = —(1 — vy) Ty — vah (O 1)
o The lagt boundary condition in (3.1) is brought together
# with the middle plane of the covering on the lower boundary of
the strip y=0 because of the slightness of the thickness of
r i the interlayer <L H).
-2 z Applying the Fourier integral transform in variable =«
2 H i /117 o anluos +tha neohlam el sead nll amine OVAY to the A3
I’[, 'r YTyl LA ONA VT wie HLUM&GIU ALiuGLALTU WIM \:’UJ.AI\’ - b ‘445
mensionless wvariables and notation
h b .
Gy.,2, g Z 7’ = gat, § = Eal, A= Ha=', § = 821, ¢ (2) 01 = ¢ (2),

m AT S ST TSI LS LA 8= Gx {i —, 1}_1
Fig.1 {we later omit the primes}, we obtain the integral eguation {2.1}
for the unknown contact pressures g¢{z) under the stamp, where
L () == | (2% sh 2u — 4du) u -+ 4m (nu sh 2u - ch 2u — 1)] X (3.2}
[(2%, ch 25 + %2 + 4 + &) u + 4m (rstgs - musch 2 + 2u + sh 2u)}1 .
_ Gyl (1 — ) (1 —vy) hvy .
SR —wGy T Hd—w 0 =3
— i 2m {4

A—md * -i- mi = . G

fas s 3 - 74 x., T3
fa i FamisFa{l +5%)]

Let us note that the statics condition
1
Q == B (aB)t = S @ (z)dz

The approximate solution of the integral eguation {2.1}, {3.2} can be cobtained by the

Table 1
A % =00 23 i 08 88 2.5 Q-
Y, 3,905 3.887 3.863 3,821 3981 5739 857
% 1,964 1.967 4.984 2.048 2,338 3,804 4£.548
2 4,04t 1,021 4058 1.150 1.425 2,555 2.716

We set m=10, n=04,v =03 in (3.2)., The distribution of the unknown contagt pressures
9 (#) 8 uynder the stamp as well as the values of the guantities Q6! are given in the table
for certain A. It is important that the number of equations in the shortened system (2.9}
does not exceed five for different values of the parameter A= 8.2} The accuracy guaranteed

for the solution of the problem is not less than Z%.
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